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ABSTRACT 
This paper presents a new cumulant based phase esti- 
mation method for linear time-invariant (LTI) systems 
with only non-Gaussian measurements contaminated 
by Gaussian noise. An optimum allpass filter is de- 
signed to process the given measurements such that its 
output has a maximum Mth-order (2 3) cumulant in 
absolute value. It can be shown that the system phase 
is equivalent to the negative value of the optimum all- 
pass filter phase except for a linear phase factor. Some 
simulation results are provided to support the proposed 
phase estimation method. 

1. INTRODUCTION 

The identification of a linear time-invariant (LTI) sys- 
tem h(n)  with only noisy output z(n)  based on the 
following convolutional model 

.(R) = U(.) * h(n)  + W(.) (1) 

is very important in many signal processing areas such 
as seismic deconvolution, channel equalization in com- 
munications, radar, sonar, speech processing and image 
processing. Recently, cumulant based system identifi- 
cation of nonminimum-phase LTI systems with only 
non-Gaussian output measurements has drawn exten- 
sive attention in the previous signal processing areas 
because cumulants, which are blind to any kind of a 
Gaussian process, can be used to not only extract the 
amplitude information but also the phase information 
of h(n) ,  meanwhile they are inherently immune from 
Gaussian measurement noise. 

Let H z be the transfer function of the unknown 
system h r l  n and H ( w )  = H ( z  = e q { j w } )  = I H ( w ) l .  
ezp{ jO(w)} .  There exist quite many methods for esti- 
mating the system phase e(w using either higher-order 

form three categories. The first category is composed 
of phase estimation methods [1,2] which estimate e(w) 
from the phase of polyspectra of z(n). The second 
category includes parametric (model based) estimation 
methods [3-51 which estimate the coefficients of H ( z )  
from cumulants of z(n) and then compute e(w) from 
the estimated H ( z ) .  Therefore, the amplitude estima- 
tion is not separable from the phase estimation. The 

cumulants or polyspectra o 2 z(n) and they basically 

third category consists of minimum-phase MP) - all- 
pass (AP) decomposition based methods t 6-81 which 
preprocess z(n) using a correlation based whitening 
filter to estimate the spectrally equivalent MP sys- 
tem H ~ p ( z )  and then estimate the allpass system 

In this paper, we propose a new phase estimation 
method by allpass filtering which only uses a single 
Mth-order (M 1 3) cumulant. The proposed method 
differs from the existing phase estimation methods in 
that it never uses the phase of polyspectra of ~ ( n ) ;  
it is a parametric estimation method without involving 
amplitude estimation and thus it is never an inverse fil- 
tering algorithm; it never needs any preprocessing with 
a correlation based whitening filter. 

H A P  (2) = H ( z )  / HMI' ( z ) 

2. A NEW CUMULANT BASED PHASE 
ESTIMATION METHOD 

Assume that data z(n), n = 0 ,1 , .  . . , N - 1, were gen- 
erated from the model given by (1) under the following 
assumptions: 

H ( z )  is a causal stable LTI system which can be 
minimum-phase or nonminimum-phase. 

The input U(.) is real, zero-mean, stationary, 
independent identically distributed (i.i.d.), non- 
Gaussian with Mth-order ( M  > 3) cumulant YM. 

The measurement noise W ( R )  is Gaussian which 
can be white or colored with unknown statistics. 

The input U(.) is statistically independent of 
4.1. 

The new phase estimation method is based on the fol- 
lowing theorem: 

Theorem 1. Assume that Z ( R )  is the noisy signal 
enerated from 1) under assumptions (AI) through 

et e(w) 6 enote the phase of the unknown sys- 
be the output of an allpass filter 

} with input ~ ( n ) .  Then the Mth- 
C ~ , y ( k l  = 0, . . . , k ~ -  1 = 0 )  

(2) 

of y(n) is maximum in absolute value if and only if 

p(w) = -e(w)  + aw 
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where cy is an unknown constant. Moreover, the maxi- 
mum of ICM,~(O,. . . ,0)l  is given by 

I s M , z ( U l ,  . ,uM--l)Idul  “ ‘dUM-1  (3) i’” 
where S ~ , ~ ( u 1 , .  . . , w ~ - l )  is the Mth-order polyspec- 
trum of ~ ( n ) .  

Assume that H p ( z )  is a pth-order causal stable all- 
pass filter with transfer function 

(4) 
up + up-1z-1 + ’ ’ .  + qz-p+1 + 2 - p  

1 + alz -1  + . ‘ .  + d p Z - P  
HP(Z) = 

and y(n) be the output of H p ( z )  with input ~ ( n )  as 
follows: 

k = l  

Based on Theorem 1, the new phase estimation method 
searches for the desired f i p ( z ) ,  whose phase $ ( U )  = 
L f i  ( U )  is used as an approximation to the p(w) de- 
scri!ml in Theorem l ,  by maximizing 

with respect to  the coefficients gP = (ul, 
where CM,~(O,  . . . , 0) is the Mth-order sample cumu- 
lant of y(n). Because the objective function J ( g p )  is 
a highly nonlinear function of g p ,  a Newton-Raphson 
type iterative algorithm is used to search for the de- 
sired tip, After f i p ( z )  is obtained, +(U) is obtained and 
B(w) can then be obtained by 2) except for a linear 

the proposed phase estimation method is summarized 
as follows: 
(Sl) Set the allpass filter order p = 0 (i.e., H o ( z )  = 1) 

(S2) Set p = p +  I .  

(S3) Search for the J ( & )  (maximum of J ( g p ) )  by a 
Newton-Raphson type iterative algorithm with 
the initial conditions ~ ~ ( 0 )  = (&Fd1 ,  O ) T .  

A 

phase factor (a constant time de r ay). The procedure of 

and compute J ( g o ) .  

(S4) I f p  5 P,,, and 

where p,,, is the maximum allowed order for the 
allpass filter and ( is a preassigned small positive 
constant, then go to ( S 2 ) ,  otherwise stop. 

Some worthy remarks regarding the proposed phase es- 
timation method are as follows: 
(RI) The iterative search algorithm used in (S3) guar- 

antees the increase of J ( g p )  whenever 4 is up- 
dated. On the other hand, I ~ M , ~ ( O  , . . . ,  0)l is 
bounded by Theorem 1. Therefore, the conver- 
gence of the proposed method is guaranteed. 

(R2) The proposed phase estimation method only uses 
a single Mth-order cumulant C M , ~  , . . . , 0) for 

- y ~  of the driving input U(.) is not equal to zero. 

(R3) In addition to the causal stable allpass filter 
H p ( z ) ,  the anticausal stable allpass filter with 
transfer function HL(z )  = H P ( z - ’ )  can also be 
used and then y(n) must be computed backwards 
from ~ ( n ) .  

(R4) Chi and Kung [9,10] proposed a cumulant based 
allpass system identification algorithm which es- 
timates the phase of an unknown (nonminimum- 
phase) allpass system by maximizing J ( g p )  given 
by (6) as well. The proposed phase estimation 
method generalizes their algorithm to the case of 
nonminimum-phase LTI systems. 

(R5) The amplitude response estimate l f i (w) l ,  which 
can be obtained using existing spectral estima- 
tion methods or cumulant based methods, and 
the phase response estimate 6(w)  obtained by the 
proposed method suggest the deconvolution by 
the inverse filter (l/lfi(u)l) . e z p { - j 9 ( u ) }  of the 
estimated LTI system. 

any M 2 3 as long as the Mth-or So er cumulant 

3. SIMULATION RESULTS 

Two simulation examples are presented to demonstrate 
that the proposed phase estimation method is effective. 
Example 1 includes some performance tests to the pro- 
posed method and Example 2 is seismic deconvolution 
with an inverse filter mentioned in (R5). Next, let us 
turn to Example 1. 
Example 1. (Performance test) 

The driving input U(.) used was a zero-mean Expo- 
nentially distributed i.i.d. sequence with variance U: = 
1 and skewness 73 = 2. An ARMA(3,2) nonminimum- 
phase system (taken from [ 5 ] )  with transfer function 

(7) 
1 - 2.95 2-l + 1.9 z W 2  

H ( z )  = 
1 - 1.3 2- l  + 1.05 z-’ - 0.32 z - ~  

was used. The synthetic data z (n )  of length N = 1024 
were generated for signal-to-noise ratio (SNR) equal to 
10. Thirty independent runs were performed with the 
cumulant order M = 3 and the (causal stable) allpass 
filter order p,,, = 5 in the proposed method. The 
obtained thirty system phase estimates with unknown 
linear phase factors artificially removed are shown in 

and their average (dashed line) is shown in 
together with the true system phase (solid 
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line). The results shown in these two figures indicate 
that the proposed method is unbiased with a small vari- 
ance. 
Example 2. (Seismic deconvolution) 

The driving input U(.) used was a zero-mean 
Bernoulli-Gaussian (B-G) random sequence with vari- 
ance ri = 1, skewness 7 3  = 0 and kurtosis 7 4  = 
0.27. An ARMA(3,3) nonminimum-phase system 
(taken from [9,10]) with transfer function 

(8) 
1 + 0.1 2-l  - 3.2725 z-’ + 1.41125 z - 3  H ( z )  = 

was used. The synthetic data x(n) for N = 512 and 
S N R  = 100 are shown in Figure 2(a). The system 
phase was estimated using the proposed method with 
the cumulant order M = 4 and the (anticausal sta- 
ble) allpass filter order p,,, = 7. The obtained sys- 
tem phase estimate &U) (dashed line) with the un- 
known linear phase factor artificially removed is shown 
in Figure 2(b) together with the true system phase 
(solid line). Data z ( n )  were then processed by a tenth- 
order cumulant based (minimum-phase) linear predic- 
tion error (LPE) filter V ( z )  [11,12] to get the decon- 
volved signal G(n) (dashed line) shown in Figure 2(c . 
Finally, data z (n)  were processed by the inverse f i -  i 
ter IV(w) lezp( - je (w)}  to get the deconvolved signal 
G(n) (dashed line) shown in Figure 2(d). One can see, 
from Figures 2(c) and 2(d), that the deconvolved signal 
shown in the latter approximates the true input signal 
U(.) (solid line) much better than that shown in the 
former except for a scale factor. The reason for this is 
simply that a phase distortion remains in the decon- 
volved signal shown in Figure 2(c) because the (non- 
minimum) phase of the system can not be equalized by 
the (minimum) phase of the LPE filter. 

1 - 1.9 2-1 + 1.1525 z - ~  - 0.1625 zq3 

4. CONCLUSIONS 

A new cumulant based phase estimation method with 
non-Gaussian measurements based on Theorem 1 has 
been presented which estimates the phase response of 
an unknown LTI system from the phase of an opti- 
mum pth-order ARMA allpass filter (see (2)). The op- 
timum allpass filter was obtained by maximizing a sin- 
gle output cumulant in absolute value with input being 
the given non-Gaussian measurements. The proposed 
method is implemented by a nonlinear optimization al- 
gorithm whose convergence is guaranteed (see (Rl)). 
It is also an “amplitude - phase” decomposition based 
method without amplitude estimation throughout the 
algorithm. It is applicable for all M 2 3 as long as the 
Mth-order cumulant 7~ of the driving input U(.) is 
not equal to zero (see (R2)). Finally, some simulation 
results were provided to justify the good performance 
of the proposed phase estimation method. 
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Fig. 1. Simulation results associated with Example 1 for SNR = 10 and N = 1024. (a) Thirty system phase 
estimates e(w) with the unknown linear phase factor artificially removed for each estimate; (b the average (dashed 
line) of the thirty estimates shown in Part (a) and the true system phase response (solid line 3 . 
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Fig. 2. Simulation results associated with Example 2.  (a) Synthetic seismic data z ( n )  of length N = 512 for SNR 
= 100; (b) the estimated phase response d(w)  (dashed line) of the system with the unknown linear phase factor 
artificially removed and the true system phase response (solid line); (c) the deconvolved signal C(n) (dotted line) 
obtained by a tenth-order LPE filter V ( r )  and the true input signal U(.) (solid line); (d) the deconvolved signal 
C(n) (dotted line) obtained by the inverse filter IV(w) lezp{- jd(w)}  and the true input signal U(.) (solid line). 
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